SHRI VENKATESHWARA UNIVERSITY

Syllabus

M. TECH Thermal Engineering (Part -Time) I Semester

(w.e.f. 2019-20)

SCHOOL OF ENGINEERING & TECHNOLOGY

SI ·	Subject Codes	Subjec t	Periods			Evaluation Scheme				End Semeste r			
N 0.			L	Т	Р	СТ	ТА	Total	PS	TE	PE	Total	Credit
1	WTE-101	Thermodynamics and Combustion	3	1	0	20	10	30		70		100	4
2	WTE-012	Energy Conservation and Management.	3	0	0	20	10	30		70		100	3
3	WTE-111	Thermodynamics and Combustion Lab	0	0	4				25		25	50	2
4		English for Research Paper Writing	2	0	0								0
		Total										250	9

Course Outcomes:

At the end of the course:

udent will get Knowledge of exergy, basic laws governing energy conversion in multi- component systems and application of chemical thermodynamics.

Student will be aware about advanced concepts in thermodynamics with emphasis on thermodynamic relations, equilibrium and stability of multiphase multi-component

systems.

- 3. Student will be aware about the molecular basis of thermodynamics.
- 4. To present theoretical, semi-theoretical and empirical models for the prediction of thermodynamic properties.
- 5. Student will be acquire the confidence in analyze the motion of combusting and non- combusting fluids whilst accounting for variable specific heats, non-ideal gas properties, chemical non-equilibrium and compressibility
- 6. Student should apply the fundamental principles of thermodynamics to non-ideal models of numerous engineering devices

Student can use a systems approach to simplify a complex problem

Syllabus Contents:

L T P 3 -0 -0

Unit 1

First law and State postulates, Second law and Entropy, Availability and Irreversibility, Transient flow analysis

Unit 2

Nonreactive Ideal-Gas Mixture, PvT Behavior of Real gases and Real Gas mixture

Unit 3

Generalized Thermodynamic Relationship

Unit 4

Combustion and Thermo-chemistry, Second law analysis of reacting mixture, Availability analysis of reacting mixture, Chemical equilibrium

Unit 5

Statistical thermodynamics, statistical interpretations of first and second law and Entropy, Third law of thermodynamics, Nerst heat theorem.

References:

- 1. Cengel, "Thermodynamics", Tata McGraw Hill Co., New Delhi, 1980.
- 2. Howell and Dedcius, "Fundamentals of Engineering Thermodynamics", McGraw Hill Inc., U.S.A.
- 3. Van Wylen & Sonntag, "Thermodynamics", John Wiley and Sons Inc., U.S.A.
- 4. Jones and Hawkings, "Engineering Thermodynamics", John Wiley and Sons Inc., U.S.A, 2004.
- 5. Holman, "Thermodynamics", McGraw Hill Inc., New York, 2002.
- 6. Faires V.M. and Simmag, "Thermodynamics", Macmillan Publishing Co. Inc., U.S.A.
- 7. Rao Y.V.C., "Postulational and Statistical Thermodynamics", Allied Publishers Inc, 1994.

Course Outcomes:

At the end of the course:

- 1. The student should acquire insight about the importance of energy
- 2. The student should capable to analyze all scenarios from energy consumption
- 3. The student should generate scenarios of energy consumption and predict the future trend The student should Suggest and plan energy conservation solutions

Syllabus Contents:

LTP 3--

Unit 1

The energy market, energy scenario, planning, utilization pattern and future strategy, Importance of energy management.

Unit 2

Energy auditing- methodology and analysis,

Unit 3

Energy economics,

Unit 4

Energy conservation in industries, Cogeneration, Combined heating and power systems,

Unit 5

Relevant international standards and laws.

References:

- 1. L.C. Witte, P.S. Schmidt, D.R.Brown, "Industrial Energy Management and Utilization", Hemispherical Publication, 1988.
- 2. Callaghan "Energy Conservation".
- 3. D.A. Reeg, "Industrial Energy Conservation", Pergamon Press, 1980.
- 4. T.L. Boyen, "Thermal Energy Recovery" Wiley, 1980.
- 5. L.J. Nagrath, "Systems Modeling and Analysis", Tata McGraw Hill, 1982.
- 6. W.C. Turner, "Energy Management Handbook ", Wiley, New York, 1982.
- 7. I.G.C. Dryden, "The Efficient Use of Energy", Butterworth, London, 1982.
- 8. R. Loftnen, Van Nostrarid Reinhold C. "Energy Handbook", 1978.
- 9. TERI Publications.